310 research outputs found

    Climate tolerances and trait choices shape continental patterns of urban tree biodiversity

    Get PDF
    Aim: We propose and test a climate tolerance and trait choice hypothesis of urban macroecological variation in which strong filtering associated with low winter temperatures restricts urban biodiversity while weak filtering associated with warmer temperatures and irrigation allows dispersal of species from a global source pool, thereby increasing urban biodiversity. Location: Twenty cities across the USA and Canada. Methods: We examined variation in tree community taxonomic diversity, origins and production of an aesthetic ecosystem service trait in a cross-section of urban field surveys. We correlated urban tree community composition indicators with a key climate restriction, namely mean minimum winter temperature, and evaluated alternative possible drivers: precipitation, summer maximum temperature, population size and the percentage of adults with a college education. Results: Species accumulation curves differed substantially among cities, with observed richness varying from 22 to 122 species. Similarities in tree communities decreased exponentially with increases in climatic differences. Ordination of tree communities showed strong separation among cities with component axes correlated with minimum winter temperature and annual precipitation. Variation among urban tree communities in richness, origins and the provisioning of an aesthetic ecosystem service were all correlated with minimum winter temperature. Main conclusions: The urban climate tolerance and trait choice hypothesis provides a coherent mechanism to explain the large variation among urban tree communities resulting from an interacting environment, species and human decisions. Reconciling the feedbacks between human decision making and biophysical limitations provides a foundation for an urban ecological theory that can better understand and predict the dynamics of other linked biotic communities, associated ecosystem dynamics and resulting services provided to urban residents

    Male commuters in north and south England: risk factors for the presence of faecal bacteria on hands

    Get PDF
    BACKGROUND: A previous study found that the prevalence of contamination with bacteria of faecal-origin on the hands of men differed across UK cities, with a general trend of increased contamination in northern cities. The aim of this study was to (1) confirm the north-south trend (2) identify causes for the trend. METHODS: Hand swabs from commuters (n = 308) at train stations in 4 cities were tested for the presence of faecal bacteria. RESULTS: The prevalence of hand contamination with faecal bacteria was again higher in cities in the north compared to the south (5% in London, 4% in Birmingham, 10% in Liverpool and 19% in Newcastle). Contamination risk decreased with age and better personal hygiene (self-reported). Soil contact and shaking hands increased contamination with faecal bacteria. However, in multivariable analysis, none of these factors fully explained the variation in contamination across cities. CONCLUSION: The study confirmed the north-south differences in faecal contamination of hands without finding a clear cause for the trend. Faecal contamination of hands was associated with personal hygiene indicators suggesting that microbiological testing may contribute to evaluating hygiene promotion campaigns

    Species Differentiation on a Dynamic Landscape: Shifts in Metapopulation Genetic Structure Using the Chronology of the Hawaiian Archipelago

    Get PDF
    Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation
    corecore